Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116512, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574617

RESUMO

GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.

2.
Signal Transduct Target Ther ; 9(1): 87, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584157

RESUMO

The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Sepse , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gasderminas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piroptose
3.
Sci Data ; 11(1): 311, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521795

RESUMO

The pig-nosed turtle (Carettochelys insculpta) represents the only extant species within the Carettochelyidae family, is a unique Trionychia member fully adapted to aquatic life and currently facing endangerment. To enhance our understanding of this species and contribute to its conservation efforts, we employed high-fidelity (HiFi) and Hi-C sequencing technology to generate its genome assembly at the chromosome level. The assembly result spans 2.18 Gb, with a contig N50 of 126 Mb, encompassing 34 chromosomes that account for 99.6% of the genome. The assembly has a BUSCO score above 95% with different databases and strong collinearity with Yangtze giant softshell turtles (Rafetus swinhoei), indicating its completeness and continuity. A total of 19,175 genes and 46.86% repetitive sequences were annotated. The availability of this chromosome-scale genome represents a valuable resource for the pig-nosed turtle, providing insights into its aquatic adaptation and serving as a foundation for future turtle research.


Assuntos
Genoma , Tartarugas , Animais , Cromossomos/genética , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico , Tartarugas/genética
4.
J Org Chem ; 89(7): 4768-4773, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503266

RESUMO

The protocol of aerobic oxidative dehydroxycyclization installed in the synthesis of rarely studied 1-hydroxyphenothiazines from catechols and o-mercaptoanilines is presented. Utilizing a natural renewable low-toxicity gallic acid as an organocatalyst, this established transformation proceeded smoothly in an aqueous ethanol solution under mild conditions with good functional group compatibility and up to a 94% isolated yield. This protocol is also characterized by its operational simple workup involving only recrystallization, revealing its sustainability and synthetic practicability.

5.
Am J Cancer Res ; 14(1): 16-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323274

RESUMO

The escalating airway management demands of cancer patients have prompted us to continually curate airway devices, with supraglottic airway devices (SADs) playing a significant role in this regard. SADs serve as instrumental tools for maintaining an open upper airway. Since the inception of the earliest SADs in the early 1980s, an array of advanced and enhanced second-generation devices have been employed in clinical settings. These upgraded SADs integrate specific features designed to enhance positive-pressure ventilation and mitigate the risk of aspiration. Nowadays, they are extensively used in general anesthesia procedures and play a critical role in difficult airway management, pre-hospital care, and emergency medicine. In certain situations, SADs may be deemed a superior alternative to endotracheal tube (ETT) and can be employed in a broader spectrum of surgical and non-surgical cases. This review provides an overview of the current evidence, a summary of classifications, relevant application scenarios, and areas for improvement in the development or clinical application of future SADs.

6.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134226

RESUMO

As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.


Assuntos
Ecossistema , Vertebrados , Animais , Filogenia , Vertebrados/genética , Cromossomos
7.
Int Immunopharmacol ; 125(Pt A): 111143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913569

RESUMO

BACKGROUND: Sepsis is a critical systemic inflammatory syndrome which usually leads to multiple organ dysfunction. Caffeic acid (CA), a phenolic compound derived from various plants, has been proved to be essential in neuroprotection, but its role in septic organ damage is unclear. This research aimed to investigate whether CA protects against organ injury in a mouse model of cecal ligation and puncture (CLP). METHODS: CA (30 mg/kg) or vehicle was administered by intraperitoneal injection immediately after CLP. The samples of blood, lungs, and livers were collected 24 h later. Organ injury was assessed by histopathological examination (HE staining), neutrophil infiltration (myeloperoxidase fluorescence), oxidative stress levels (MDA, SOD, HO-1), and inflammatory cytokines (TNF-α, IL-1ß, and IL-6) release in lung and liver tissues. Neutrophil extracellular trap (NET) formation was analyzed by immunofluorescence. In vitro experiments were performed to investigate the potential mechanisms of CA using small interfering RNA (siRNA) techniques in neutrophils, and the effect of CA on neutrophil apoptosis was analyzed by flow cytometry. RESULTS: Results showed that CA treatment improved the 7-day survival rate and attenuated the histopathological injury in the lung and liver of CLP mice. CA significantly reduced neutrophil infiltration in the lungs and livers of CLP mice. TNF-α, IL-1ß, IL-6 and LTB4 were reduced in serum, lung, and liver of CA-treated CLP mice, and phosphorylation of MAPK (p38, ERK, JNK) and p65 NF-κB was inhibited in lungs and livers. CA treatment further increased HO-1 levels and enhanced superoxide dismutase (SOD) activity, but reduced malondialdehyde (MDA) levels and NET formation. Similarly, in vitro experiments showed that CA treatment and 5-LOX siRNA interference inhibited inflammatory activation and NET release in neutrophils, suppressed MAPK and NF-κB phosphorylation in LPS-treated neutrophils, and decreased LTB4 and cfDNA levels. Flow cytometric analysis revealed that CA treatment reversed LPS-mediated delayed apoptosis in human neutrophils, and Western blot also indicated that CA treatment inhibited Bcl-2 expression but increased Bax expression. CA treatment did not induce further changes in neutrophil apoptosis, inflammatory activation, and NET release when 5-LOX was knocked down by siRNA interference. CONCLUSIONS: CA has a protective effect on lung and liver injury in a murine model of sepsis, which may be related to inhibition of the 5-LOX/LTB4 pathway.


Assuntos
Neutrófilos , Sepse , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Leucotrieno B4 , Interleucina-6 , Lipopolissacarídeos , Sepse/metabolismo , RNA Interferente Pequeno , Superóxido Dismutase , Camundongos Endogâmicos C57BL
8.
Sci China Life Sci ; 66(11): 2629-2645, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37273070

RESUMO

Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.


Assuntos
Temperatura Alta , Atum , Animais , Atum/genética , Termogênese/genética , Peixes/fisiologia , Músculos
9.
Redox Biol ; 63: 102745, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201414

RESUMO

Sepsis-associated encephalopathy (SAE) is one of the common serious complications in sepsis, and the pathogenesis of SAE remains unclear. Sirtuin 1 (SIRT1) has been reported to be downregulated in the hippocampus and SIRT1 agonists can attenuated the cognitive dysfunction in septic mice. Nicotinamide adenine dinucleotide (NAD+) is a key substrate to maintain the deacetylation activity of SIRT1. As an intermediate of NAD+, ß-Nicotinamide Mononucleotide (NMN) has been reported to be promising in treating neurodegenerative diseases and cerebral ischemic injury. Thus we sought to investigate the potential role of NMN in SAE treatment. The SAE model was established by cecal ligation and puncture (CLP) in vivo, and neuroinflammation model was established with LPS-treated BV-2 cells in vitro. Memory impairment was assessed by Morris water maze and fear conditioning tests. As a result, the levels of NAD+, SIRT1 and PGC-1α were significantly reduced in the hippocampus of septic mice, while the acetylation of total lysine, phosphorylation of P38 and P65 were enhanced. All these changes induced by sepsis were inverted by NMN. Treating with NMN resulted in improved behavior performance in the fear conditioning tests and Morris water maze. Apoptosis, inflammatory and oxidative responses in the hippocampus of septic mice were attenuated significantly after NMN administration. These protective effect of NMN against memory dysfunction, inflammatory and oxidative injuries were reversed by the SIRT1 inhibitor, EX-527. Similarly, LPS-induced activation of BV-2 cells were attenuated by NMN, EX-527 or SIRT1 knockdown could reverse such effect of NMN in vitro. In conclusion, NMN is protective against sepsis-induced memory dysfunction, and the inflammatory and oxidative injuries in the hippocampus region of septic mice. The NAD+/SIRT1 pathway might be involved in one of the mechanisms of the protective effect.


Assuntos
Isquemia Encefálica , Sepse , Animais , Camundongos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Estresse Oxidativo , Sepse/complicações , Sepse/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia
10.
Int J Biol Sci ; 19(5): 1413-1429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056920

RESUMO

Sepsis-associated encephalopathy (SAE), as shown as acute and long-term cognitive impairment, is associated with increased mortality of sepsis. The causative factors of SAE are diverse and the underlying pathological mechanisms of SAE remain to be fully elucidated. Multiple studies have demonstrated a crucial role of microglia in the development of SAE, but the role of neutrophils and neutrophil extracellular traps (NETs) in SAE is still unclear. Here, we firstly show that in murine sepsis model, neutrophils and NETs promote blood-brain barrier (BBB) disruption, neuronal apoptosis and microglia activation in hippocampus and induce hippocampus-dependent memory impairment. Anti-Gr-1 antibody or DNase I treatment attenuates these sepsis-induced changes. Then, we find that genetic deletion of neutrophil GSDMD or PD-L1 reduces NET release and improves SAE in murine sepsis model. Finally, in human septic neutrophils, p-Y705-Stat3 binds to PD-L1, promotes PD-L1 nuclear translocation and enhances transcription of the gasdermin D (GSDMD) gene. In summary, our findings firstly identify a novel function of PD-L1 in maintaining transcriptional activity of p-Y705-Stat3 to promote GSDMD-dependent NET release in septic neutrophils, which plays a critical role in the development of SAE.


Assuntos
Armadilhas Extracelulares , Encefalopatia Associada a Sepse , Sepse , Camundongos , Humanos , Animais , Encefalopatia Associada a Sepse/genética , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/metabolismo , Armadilhas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Apoptose , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros/metabolismo
11.
Front Immunol ; 14: 1112196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891309

RESUMO

Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Animais , Camundongos , Neutrófilos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Sepse/complicações , Sepse/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo
12.
Eur J Immunol ; 53(1): e2250011, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250416

RESUMO

Gasdermin D (GSDMD) is a classical molecule involved in pyroptosis. It has been reported to be cleaved into N-terminal fragments to form pores in the neutrophil membrane and promote the release of neutrophil extracellular traps (NETs). However, it remains unclear if GSDMD is involved in neutrophil regulation and NET release during ARDS. The role of neutrophil GSDMD in the development of ARDS was investigated in a murine model of ARDS induced by lipopolysaccharide (LPS) using the neutrophil specific GSDMD-deficient mice. The neutrophil GSDMD cleavage and its relationship with NETosis were also explored in ARDS patients. The cleavage of GSDMD in neutrophils from ARDS patients and mice was upregulated. Inhibition of GSDMD by genetic knockout or inhibitors resulted in reduced production of NET both in vivo and in vitro, and attenuation of LPS-induced lung injury. Moreover, in vitro experiments showed that the inhibition of GSDMD attenuated endothelial injury co-cultured with neutrophils from ARDS patients, while extrinsic NETs reversed the protective effect of GSDMD inhibition. Collectively, our data suggest that the neutrophil GSDMD cleavage is crucial in NET release during ARDS. The NET release maintained by cleaved GSDMD in neutrophils may be a key event in the development of ARDS.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos , Neutrófilos , Piroptose
13.
J Surg Res ; 283: 9-18, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36347171

RESUMO

INTRODUCTION: Nicotinamide mononucleotide (NMN) is a nucleotide that is commonly recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis with multiple pharmacological effects. The purpose of this study was to evaluate the protective effect of nicotinamide mononucleotide (NMN) against lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS: We investigated the effect of NMN on ALI-induced inflammatory response, oxidative stress, and cell apoptosis. The ALI mouse model was performed by injecting LPS intratracheally at a dose of 10 mg/kg in 50 µL saline. Flow cytometry was used to detect neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and ELISA was used to detect the contents of inflammatory cytokines TNF-α, IL-1ß and IL-6 in BALF. Oxidative stress was evaluated by determining the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in lung tissue. ROS formation was analyzed by immunofluorescence. Western blotting was performed to detect apoptotic levels and p38MAPK/NF-κB phosphorylation levels in lung tissue. RESULTS: In the ALI mouse model, NMN showed a significant therapeutic effect compared to the LPS group. NMN attenuated the pathological damage and cell apoptosis in lung tissue, decreased the levels of TNF-α, IL-1ß, and IL-6 in BALF, and reduced the number of total cells and neutrophils in BALF. In addition, NMN attenuated the LPS-induced elevation of dry-to-wet ratio, MDA content, p38 MAPK and p65 NF-κB phosphorylation levels, and the SOD activity was increased by NMN treatment. CONCLUSIONS: In conclusion, the present study showed that NMN exerted a protective effect on LPS-induced ALI with anti-inflammatory, antioxidative, and antiapoptotic effects.


Assuntos
Lesão Pulmonar Aguda , Mononucleotídeo de Nicotinamida , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos , Pulmão/patologia , NF-kappa B , Mononucleotídeo de Nicotinamida/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno , Superóxido Dismutase/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Immunol ; 14: 1323797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193090

RESUMO

Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.


Assuntos
Receptor de Morte Celular Programada 1 , Sepse , Humanos , Antígeno B7-H1 , Imunização , Sepse/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
15.
Sensors (Basel) ; 22(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36433362

RESUMO

Magnetic coupling resonance wireless power transfer can efficiently provide energy to intracranial implants under safety constraints, and is the main way to power fully implantable brain-computer interface systems. However, the existing maximum efficiency tracking wireless power transfer system is aimed at optimizing the overall system efficiency, but the efficiency of the secondary side is not optimized. Moreover, the parameters of the transmitter and the receiver change nonlinearly in the power control process, and the efficiency tracking mainly depends on wireless communication. The heat dissipation caused by the unoptimized receiver efficiency and the wireless communication delay in power control will inevitably affect neural activity and even cause damage, thus affecting the results of neuroscience research. Here, a linear-power-regulated wireless power transfer method is proposed to realize the linear change of the received power regulation and optimize the receiver efficiency, and a miniaturized linear-power-regulated wireless power transfer system is developed. With the received power control, the efficiency of the receiver is increased to more than 80%, which can significantly reduce the heating of fully implantable microsystems. The linear change of the received power regulation makes the reflected impedance in the transmitter change linearly, which will help to reduce the dependence on wireless communication and improve biological safety in received power control applications.


Assuntos
Temperatura Alta , Tecnologia sem Fio , Próteses e Implantes , Impedância Elétrica , Regulação da Temperatura Corporal
17.
Front Immunol ; 13: 963955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059483

RESUMO

Sepsis is a prevalent disease that has alarmingly high mortality rates and, for several survivors, long-term morbidity. The modern definition of sepsis is an aberrant host response to infection followed by a life-threatening organ dysfunction. Sepsis has a complicated pathophysiology and involves multiple immune and non-immune mediators. It is now believed that in the initial stages of sepsis, excessive immune system activation and cascading inflammation are usually accompanied by immunosuppression. During the pathophysiology of severe sepsis, neutrophils are crucial. Recent researches have demonstrated a clear link between the process of neutrophil cell death and the emergence of organ dysfunction in sepsis. During sepsis, spontaneous apoptosis of neutrophils is inhibited and neutrophils may undergo some other types of cell death. In this review, we describe various types of neutrophil cell death, including necrosis, apoptosis, necroptosis, pyroptosis, NETosis, and autophagy, to reveal their known effects in the development and progression of sepsis. However, the exact role and mechanisms of neutrophil cell death in sepsis have not been fully elucidated, and this remains a major challenge for future neutrophil research. We hope that this review will provide hints for researches regarding neutrophil cell death in sepsis and provide insights for clinical practitioners.


Assuntos
Neutrófilos , Sepse , Humanos , Inflamação/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Piroptose
18.
Oxid Med Cell Longev ; 2022: 7411824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910849

RESUMO

Salvianolic acid A (SAA) is one of bioactive polyphenol extracted from a Salvia miltiorrhiza (Danshen), which was widely used to treat cardiovascular disease in traditional Chinese medicine. SAA has been reported to be protective in cardiovascular disease and ischemia injury, with anti-inflammatory and antioxidative effect, but its role in acute lung injury (ALI) is still unknown. In this study, we sought to investigate the therapeutic effects of SAA in a murine model of lipopolysaccharide- (LPS-) induced ALI. The optimal dose of SAA was determined by comparing the attenuation of lung injury score after administration of SAA at three different doses (low, 5 mg/kg; medium, 10 mg/kg; and, high 15 mg/kg). Dexamethasone (DEX) was used as a positive control for SAA. Here, we showed that the therapeutic effect of SAA (10 mg/kg) against LPS-induced pathologic injury in the lungs was comparable to DEX. SAA and DEX attenuated the increased W/D ratio and the protein level, counts of total cells and neutrophils, and cytokine levels in the BALF of ALI mice similarly. The oxidative stress was also relieved by SAA and DEX according to the superoxide dismutase and malondialdehyde. NET level in the lungs was elevated in the injured lung while SAA and DEX reduced it significantly. LPS induced phosphorylation of Src, Raf, MEK, and ERK in the lungs, which was inhibited by SAA and DEX. NET level and phosphorylation level of Src/Raf/MEK/ERK pathway in the neutrophils from acute respiratory distress syndrome (ARDS) patients were also inhibited by SAA and DEX in vitro, but the YEEI peptide reversed the protective effect of SAA completely. The inhibition of NET release by SAA was also reversed by YEEI peptide in LPS-challenged neutrophils from healthy volunteers. Our data demonstrated that SAA ameliorated ALI via attenuating inflammation, oxidative stress, and neutrophil NETosis. The mechanism of such protective effect might involve the inhibition of Src activation.


Assuntos
Lesão Pulmonar Aguda , Ácidos Cafeicos , Armadilhas Extracelulares , Lactatos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ácidos Cafeicos/farmacologia , Doenças Cardiovasculares/patologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Humanos , Lactatos/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Neutrófilos/metabolismo
19.
Front Immunol ; 13: 949217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016930

RESUMO

Programmed death ligand 1 (PD-L1) is not only an important molecule in mediating tumor immune escape, but also regulates inflammation development. Here we showed that PD-L1 was upregulated on neutrophils in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS). Neutrophil specific knockout of PD-L1 reduced lung injury in ARDS model induced by intratracheal LPS injection. The level of NET release was reduced and autophagy is elevated by PD-L1 knockout in ARDS neutrophils both in vivo and in vitro. Inhibition of autophagy could reverse the inhibitory effect of PD-L1 knockout on NET release. PD-L1 interacted with p85 subunit of PI3K at the endoplasmic reticulum (ER) in neutrophils from ARDS patients, activating the PI3K/Akt/mTOR pathway. An extrinsic neutralizing antibody against PD-L1 showed a protective effect against ARDS. Together, PD-L1 maintains the release of NETs by regulating autophagy through the PI3K/Akt/mTOR pathway in ARDS. Anti-PD-L1 therapy may be a promising measure in treating ARDS.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/patologia , Autofagia , Antígeno B7-H1/metabolismo , Endotoxinas/efeitos adversos , Armadilhas Extracelulares/metabolismo , Humanos , Lipopolissacarídeos/efeitos adversos , Neutrófilos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Serina-Treonina Quinases TOR/metabolismo
20.
Nat Ecol Evol ; 6(9): 1354-1366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817827

RESUMO

Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.


Assuntos
Carpas , Poliploidia , Animais , Genoma , Carpa Dourada/genética , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...